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Problem statement

We are interested in solving the problem:
minimize  f(x) £ (x) + h(F(x))
X€ERN?

where ¢ : R" = R, F:R” = RP, h: R =+ R,
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Problem statement

We are interested in solving the problem:

minimize f(x) £ ¥(x) + h(F(x))

where ¥ : R" = R, F:R" = RP, h: RP —» R, and

» 1) is smooth with known derivatives

» h is nonsmooth, piecewise linear, and has a known structure
(cheap to evaluate)

» F is smooth, nonlinear, and has a relatively unknown structure
(expensive to evaluate)

Piecewise linear h does not imply h o F is piecewise linear.



Formulation

h(F(x)) = max{sin(2x) + 1, cos(2x), x} — min {sin(2x) + 1, cos(2x), x}
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Notes

» The manifold sampling framework does not require the availability of
the Jacobian VF.
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Notes

» The manifold sampling framework does not require the availability of
the Jacobian VF.

> Applicable both when inexact values for VF(x) are available and in the
derivative-free case, when only F(x) is available.

» We will build component models m"i of each F; around points x. We
can then use VM(x) € R™P where



Piecewise linear functions

Definition
A function h: RP — R is piecewise linear if h is continuous and there

exists a finite collection $§ = {h;:i=1,..., m} of affine functions that
map RP” into R, for which

h(z) € {h(z) : he H}, Vz € RP.

» his a continuous selection of ).
» Elements of $) are selection functions of h.
> hi:z€RP— (a;,z) + b; for each /.
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Piecewise linear functions

A function h: RP — R is piecewise linear if h is continuous and there
exists a finite collection $§ = {h;:i=1,..., m} of affine functions that
map RP” into R, for which

h(z) € {h(z) : he H}, Vz € RP.

» his a continuous selection of ).
» Elements of $) are selection functions of h.
> hi:z€RP— (a;,z) + b; for each /.

Sit{y:hly)=h(y)}, S2d(int(S)), hz)2{i:z€8},

h; for i € I(z) is an essentially active selection function for h at z.
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Essentially active
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Essentially active
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N
Laser pulse propagating in a plasma channel

Determine plasma channel properties that minimize the maximum
difference in the laser intensity.

—‘Configu‘ration 1
— Configuration 2]|

Intensity

10 1‘0 éO 36 4‘0 5;0 60
Time
f(x) = max{Fi(x)} — min{F;(x)}
Ql QZ
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A generalized derivative

The B-subdifferential of f at x is defined as
pf(x) 2 {g €= lim VF(y/): Y € ’D} :
¥ —=x
The generalized Clarke subdifferential of f at x is defined as

dcf(x) £ co(dB).
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A generalized derivative

The B-subdifferential of f at x is defined as
pf(x) 2 {g €= lim VF(y/): Y € ’D} :
¥ —=x
The generalized Clarke subdifferential of f at x is defined as

dcf(x) £ co(dB).

For our case:
Och(z) =co({aj:i € Ih(2)})

A point x is called a Clarke stationary point of f if 0 € O f(x).

A‘Qﬁ;? ——
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Algorithm components

> Generator set &*
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Generator set

At some iterate x*,

o 2 | ) {Ve(F)+ VM(xK)a}
i€lpn(F(x¥))

where I,(F(x¥)) is the set of essentially active indices of h at F(x*).
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Generator set

At some iterate x*,

o2 () {VY()+VM(x)a} — MS4PL-1
i€ (F(x¥))

where I,(F(x¥)) is the set of essentially active indices of h at F(x*).

Or, given a set of points Y = {x*, 2, ..., yP} C B(x*, Ax)

o 2 ) U (V¥ +VM(x*)a} — MSaPL-2

YEY iel(F(y))

Assumption
The set &~ satisfies MS4APL-1 C ¥ C MS4PL-2.
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Smooth master model

Our model gradients around iterate x* satisfy
g* £ proj (0, co (6¥)) € co (&),

Let \* be the corresponding coefficients so that g = GK\*.
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Smooth master model

Our model gradients around iterate x* satisfy
g* £ proj (0, co (6¥)) € co (&),

Let \* be the corresponding coefficients so that g = GK\*.

Define

k & . .
A - ajl'“a‘Jt

and set wX = AK)\*. Define the smooth master model m[: R" — R,

P P
mi(x) £ 9(x) + Y _wimF(x) + Y Nib;.
i=1 i=1
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Trust region subproblem

Approximately solve
minimize m{(x* + s)
S

subject to: s € B(0, Ay)

to obtain a solution s satisfying

WO S (M) = W +9), ) 2 gk min { s, 1L

Kmh
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Measuring descent

» Descent is measured using some selection function h(¥) and not h
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Measuring descent

» Descent is measured using some selection function h(¥) and not h

» Must ensure information about h() is in &* before taking a step

» h(k) must satisfy

HO(F()) < hF(H)  and ARG+ 54) > h(F (K + 5)),
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Measuring descent

» Descent is measured using some selection function h(¥) and not h

» Must ensure information about h() is in &* before taking a step

» hk) must satisfy

NOF() < MF()  and  WIF(x +59)) > h(F(K +54)),

& YOK) = Pk +55) + hO(F(x)) — hI(F(x +54))

T PR TR — (et sF) + (MI(xK) — M(xF + sk, alk)
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Examples of h(K)

T
< T .l - h(K)
[}
F(x) F(x+s)
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Examples of h(¥)

3
L
< \~~_
h® 8T
F(x) F(x+s)
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Examples of h(K)
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Examples of h(K)

F(x) F(x+s)
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Algorithm components

Generator set &

v

v

Smooth master model m],

k

v

Trust-region subproblem solution s

v

Measuring descent with px
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Algorithm MS4PL

Choose x0 and A
for k=0,1,2,... do
Build p component models mi fully linear on B(x¥, Ay)
Form VM(x*) using VmFi(x¥) and construct &* C R”
Pk £ —00
while p, = —o0 do
if Ax < n2||Vmf(x)|| then
Approximately solve TRSP to obtain s¥
Evaluate F(x* 4 s*) and find h(¥)
if (Vy(xk)+ VM(xK)ak)) € % then
| Calculate py
else
L B BF U {VY(xK) + VM(xK) alk)}
Update component models m™i and master model m”
else
L break

if px > m1 > 0 then

‘ Xk+1 — Xk + Sky Ak+1 <~ min{’YincAk: Amax}
else

Kk+1 K
| xF v XK, App1 < Ydec Dk




Generator set

At some iterate x*,

o & |J {Ve)+VM(x)a} — MSaPL-1
i€ lh(F(xk))

where I,(F(x¥)) is the set of essentially active indices of h at F(x*).
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Generator set

At some iterate x*,

e 2 (J {Ve()+VM()a} — MSAPL-1
i€ lh(F(xk))

where I,(F(x¥)) is the set of essentially active indices of h at F(x*).

Or, given a set of points Y = {x*,y2, ..., ¥y} C B(x*, Ay) ,

21U U AVt + vM(K)a} — MsapL-2
yeYiely(F(y))
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Convergence

» If the trust region radius Ay is a sufficiently small multiple of the master
model gradient ||g¥||, the iteration is guaranteed to be successful.

> |imk*>00 Ak =0.

» Some subsequence of master model gradients g* goes zero.

» Zero is in the generalized Clarke subdifferential of cluster points of any
subsequence of iterates with master model gradients converging to zero.

» The same holds for cluster points of the sequence of MS4PL iterates.



Test problems

Let h be a censored Z;-loss function. Given data d € RP, censors
¢ € RP, and the mapping F : R" — RP, we define

f(x) = Zp: |di — max {Fi(x). ¢} .

That is, ¢ = 0, and

p

h(y) =Y Idi — max{y;, ¢}|.

i=1
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Test problems

Let h be a censored Z;-loss function. Given data d € RP, censors
¢ € RP, and the mapping F : R" — RP, we define

f(x) = z”: |di — max {Fi(x), ¢} .

That is, ¢ = 0, and

p

h(y) = Z |di — max{yi, i}

i=1

Define F to be the 53 vector mapping in the Mére and Wild
benchmarking set. 2 < n <12, 2 < p <45,






Algorithms to compare

MS4PL-1 Using manifolds at x* [F, knowledge of h]

MS4PL-2 Using manifolds in B(x*, Ax) [F, knowledge of h]
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Algorithms to compare

MS4PL-1 Using manifolds at x* [F, knowledge of ]
MS4PL-2 Using manifolds in B(x*, Ax) [F, knowledge of h]

PLC POUNDERs using a single manifold active at x* to form a
master model [F, single element of O h]

SLQP-GS Gradient sampling algorithm [Curtis] [f, Opf (via VF)]
GRANSO BFGS-SQP [Mitchell, Curtis, Overton.] [f, 8sf (via VF)]

MS4PL-1-grad Using manifolds at x* [F, knowledge of h, VF for models]
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Tests

f test A method s solves a problem p to a level T after j
function evaluations if

F(x0) = F(x) = (1 = 7)(F(x°) = F,)
x0 is the problem’s starting point, and ?p is the
best-found function value.
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Tests

f test A method s solves a problem p to a level T after j
function evaluations if

F(x0) = F(x) = (1 = 7)(F(x°) = F,)
x° is the problem’s starting point, and ?p is the
best-found function value.

Ocf test Sample gradients.

Draw 30 points uniformly from B(x/, 10~8) for each point
x/ evaluated by each method.

s solves p to a level T after j function evaluations if
|11 < 7 [|&°]



Data profiles
f-test, 7 = 1073

n L

g 0.8
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GRANSO
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Function evaluations divided by (n, + 1)
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Data profiles
Ocf-test, T = 1073
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=
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Data profiles

Ocf-test, T = 107"

Fraction of problems

100 200 300 400 500
Function evaluations divided by (n, + 1)
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Conclusions

When optimizing functions of the form h(F(x)) when
> his “easy”
» F is “hard”

it can be advantageous to model F; and then combine those models via
known information about h.
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Conclusions

When optimizing functions of the form h(F(x)) when
> his “easy”
> Fis “hard”

it can be advantageous to model F; and then combine those models via
known information about h.

Email jmlarson®@anl.gov for a preprint.

Thank you!



